Predicting RNA Secondary Structures with Arbitrary Pseudoknots by Maximizing the Number of Stacking Pairs
نویسندگان
چکیده
The paper investigates the computational problem of predicting RNA secondary structures. The general belief is that allowing pseudoknots makes the problem hard. Existing polynomial-time algorithms are heuristic algorithms with no performance guarantee and can handle only limited types of pseudoknots. In this paper, we initiate the study of predicting RNA secondary structures with a maximum number of stacking pairs while allowing arbitrary pseudoknots. We obtain two approximation algorithms with worst-case approximation ratios of 1/2 and 1/3 for planar and general secondary structures, respectively. For an RNA sequence of n bases, the approximation algorithm for planar secondary structures runs in O(n(3)) time while that for the general case runs in linear time. Furthermore, we prove that allowing pseudoknots makes it NP-hard to maximize the number of stacking pairs in a planar secondary structure. This result is in contrast with the recent NP-hard results on psuedoknots which are based on optimizing some general and complicated energy functions.
منابع مشابه
K-Partite RNA Secondary Structures
RNA secondary structure prediction is a fundamental problem in structural bioinformatics. The prediction problem is difficult because RNA secondary structures may contain pseudoknots formed by crossing base pairs. We introduce k-partite secondary structures as a simple classification of RNA secondary structures with pseudoknots. An RNA secondary structure is k-partite if it is the union of k ps...
متن کاملIPknot: fast and accurate prediction of RNA secondary structures with pseudoknots using integer programming
MOTIVATION Pseudoknots found in secondary structures of a number of functional RNAs play various roles in biological processes. Recent methods for predicting RNA secondary structures cover certain classes of pseudoknotted structures, but only a few of them achieve satisfying predictions in terms of both speed and accuracy. RESULTS We propose IPknot, a novel computational method for predicting...
متن کاملTurboKnot: rapid prediction of conserved RNA secondary structures including pseudoknots
MOTIVATION Many RNA molecules function without being translated into proteins, and function depends on structure. Pseudoknots are motifs in RNA secondary structures that are difficult to predict but are also often functionally important. RESULTS TurboKnot is a new algorithm for predicting the secondary structure, including pseudoknotted pairs, conserved across multiple sequences. TurboKnot fi...
متن کاملRNA Secondary Structure Prediction with Simple Pseudoknots
Pseudoknots are widely occurring structural motifs in RNA. Pseudoknots have been shown to be functionally important in different RNAs which play regulatory, catalytic, or structural roles in cells. Current biophysical methods to identify the presence of pseudoknots are extremely time consuming and expensive. Therefore, bioinformatics approaches to accurately predict such structures are highly d...
متن کاملAn Iterated loop matching approach to the prediction of RNA secondary structures with pseudoknots
MOTIVATION Pseudoknots have generally been excluded from the prediction of RNA secondary structures due to its difficulty in modeling. Although, several dynamic programming algorithms exist for the prediction of pseudoknots using thermodynamic approaches, they are neither reliable nor efficient. On the other hand, comparative methods are more reliable, but are often done in an ad hoc manner and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of computational biology : a journal of computational molecular cell biology
دوره 10 6 شماره
صفحات -
تاریخ انتشار 2001